MMC, Sep 7,2017

MDS Codes for Distributed Storage System

Speaker	Xiaohu Tang
Email	xhutang@swjtu.edu.cn

Joint works with J. Li, P. Udaya, and C. Tian

Outline

The age of big data

Jim Gray 1998 Turing Award Winner

Every 18 months

New storage=Sum of all old storage

Big data

IDC reported the size of the digital universe exceeded

- 1 ZB in 2010
- 1.8 Zb in 2011
- 35 Zb expected in 2020

Challenge

How to store big data?

Solutions: Centralized VS Distributed

Centralized storage Distributed Storage

- Specific sever
- Specific disk array
- Bad scalability
- Expensive

Multiple independent device

- Good scalability
- Cheap

Reliability

Two mechanisms for redundancy

Replication

Two mechanisms for redundancy

• Erasure Code

•

•

Repair

Maintain Redundancy

Repair

Erasure code

Download bandwidth 2M

Regenerating code

2007 A. G. Dimakis et al.

Download bandwidth 1.5M

Storage-Communication tradeoff

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, "Network coding for distributed storage systems," *IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.*

14

State of the art

Before 2014

	Rate		
Optimal repair	≤0.5	>0.5	
Systematic node	Consultatela	Partially	
Parity node	Completely	Seldom	

Rate=The size of original file/The storage

Product matrix method

- MBR for any possible parameters
- MSR for

Rate<1/2

K.V. Rashmi, N.B. Shah, and P.V. Kumar, Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction, IEEE Trans. Inf. Theory, Vol. 57, NO. 8, pp. 5227-5239, 2011

Interference alignment technique

Interference alignment: 3 equations but 4 unknowns

General case (n=k+r,k,d)

where f_i is a column vector of length a, $A_{i,j}$ is an square matrix of order a

18

Most interesting Case (n=k+2,k,d=k+1)

- Data node 1:
- Data node 2:
- ...
- Data node k:
- Parity node 1:
- $f_1 + f_2 + \dots + f_k$

 f_1 f_2

 f_k

• Parity node 2:

$$A_1f_1 + A_2f_2 + \dots + A_kf_k$$

where f_i is a column vector of length a, A_i is an square matrix of order a

Optimal repair

To repair node *i*, download half from other k+1 nodes by multiplying a matrix S_i of order $a/2 \times a$

- Data node 1: $S_i f_1$ • Data node 2: $S_i f_2$
- ...
- Data node k: $S_i f_k$
- Parity node 1:

$$S_i f_1 + S_i f_2 + \dots + S_i f_k$$

• Parity node 2:

$$S_i A_1 f_1 + S_i A_2 f_2 + \dots + S_i A_k f_k$$

Sufficient conditions

 $(k+1)^* \alpha/2$ equations but $k*\alpha$ unknowns • Solve α unknowns f_i

• Cancel $(k - 1)\alpha$ unknowns f_j , $j \neq i$

$$\operatorname{rank}\begin{pmatrix} S_i\\ S_iA_j \end{pmatrix} = \begin{cases} \frac{\alpha}{2}, & \text{if } i \neq j\\ \alpha, & \text{if } i = j \end{cases} \text{ for any } 1 \leq i, j \leq k.$$

Best known results

	k	α	Alphabet size
Zigzag	<i>m</i> +1	2 ^{<i>m</i>}	3
Long MDS	3 <i>m</i>	2 ^{<i>m</i>}	2m+1

- T. Tamo, Z. Wang and J. Bruck, ``Zigzag codes: MDS array codes with optimal rebuilding," IEEE Trans. Inform. Theory, vol. 59, no. 3, pp. 1597-1616, Mar. 2013.
- Z. Wang, T. Tamo and J. Bruck, ``Long MDS codes for optimal repair bandwidth," Tech. Rep. Available at http:// /paradise.caltech.edu/etr.html

Zigzag code

23

Properties

• Optimal access property

Directly download without any computation

• Optimal update property

Update only 2 bits in parity nodes when update one data, which is the minimal update

Our work

D Code construction with

- Optimal access property
- Optimal update property
- Optimal repair of parity nodes

Code construction

Includes the Zigzag codes and long MDS codes

Establish a general but simple framework of (k+2,k,k+1) MSR code based on invariant subspace technique, which unifies the best known cases

New constructions

Construct more MSR codes, some of which improve Zigzag

	New	New	New	New	The Zigzag	The Long MDS
	$\mathrm{code}\;\mathcal{C}_1$	$\operatorname{code} \mathcal{C}_2$	$\operatorname{code} \mathcal{C}_3$	$\operatorname{code} \mathcal{C}_4$	code [18]	$\operatorname{code}\left[20\right]$
k	3m	2m	2m	2m	m+1	3m
k_A	m	m	m	0	m+1	2m
k_U	m	m	2m	2m	m+1	m
$k_{A\&U}$	m	m	m	0	m+1	0
q	$\geq 2m+1$	$\geq m+1$	$\geq 2m+1$	$\geq m+1$	3	$\geq 2m+1$

J. Li, X.H. Tang, and U. Parampalli, A Framework of Constructions of Minimal Storage Regenerating Codes With the Optimal Access/Update Property, IEEE Trans. Inf. Theory, 61(4): 1920-1932 (2015)

Definition: Let *q* be a prime power and *A* be a $\alpha \times \alpha$ matrix. Assume that U is a subspace of F_q^{α} with dim(U)= $s < \alpha$. Then U is said to be a invariant subspace with respect to *A* if

 $Aw \in U$ for any $w \in U$

Definition: Let S be a matrix. Span(S) is defined as the vector space spanned by its rows.

$$\operatorname{rank}\left(\begin{array}{c}S_i\\S_iA_j\end{array}\right) = \begin{cases} \frac{\alpha}{2}, & \text{if } i \neq j\\\alpha, & \text{if } i = j \end{cases} \text{ for any } 1 \leq i, j \leq k.$$

Assume that e_0 and e_1 are two arbitrary linearly independent row vectors of length α over F_{α} . Let

$$S = \left(\begin{array}{c} e_0\\ e_1 \end{array}\right)$$

Then Span(S) is an invariant subspace with respect to A if and only if

$$\begin{pmatrix} e_0 \\ e_1 \end{pmatrix} A = \begin{pmatrix} ae_0 + be_1 \\ ce_0 + de_1 \end{pmatrix} \text{ and } ad \neq bc, \ a, b, c, d \in \mathbf{F}_q$$

• type I if
$$\begin{pmatrix} e_0 \\ e_1 \end{pmatrix} A = \begin{pmatrix} ae_0 \\ de_1 \end{pmatrix}$$

• type II if $\begin{pmatrix} e_0 \\ e_1 \end{pmatrix} A = \begin{pmatrix} be_1 \\ ce_0 \end{pmatrix}$
• type III if $\begin{pmatrix} e_0 \\ e_1 \end{pmatrix} A = \begin{pmatrix} ae_0 \\ ce_0 + de_1 \end{pmatrix}$
• type IV if $\begin{pmatrix} e_0 \\ e_1 \end{pmatrix} A = \begin{pmatrix} be_1 \\ ce_0 + de_1 \end{pmatrix}$

30

Our methods

Let $V = F_q^{\alpha}$, V_0 and V_1 be a partition of *V* with $|V_0| = |V_1|$. For simplicity, we still use $V_0(V_1)$ to denote the matrix formed by the rows of $V_0(V_1)$.

Then A can be characterized by

$$\left(\begin{array}{c}V_0\\V_1\end{array}\right)A = \left(\begin{array}{c}aV_0 + bV_1\\cV_0 + dV_1\end{array}\right)$$

Goal: Find *k* such partitions $V_{i,0}$ and $V_{i,1}$ to determine the coding matrix A_i

Partition

Let $\alpha = 2^m$, and e_i , $0 \le i < \alpha$ be a basis of F_q^{α} . The *m* partitions are

$$\{e_0, e_1, \cdots, e_{2^m - 1}\} = V_{1,0} \cup V_{1,1} = \cdots = V_{m,0} \cup V_{m,1}$$

1

such that

$$V_{i_1,j_1} \cap V_{i_2,j_2} \cap \dots \cap V_{i_l,j_l} = 2^{m-l}$$

for any $1 \le i_1 < i_2 < \dots < i_l \le m$, $j_t = 0, 1, 1 \le t \le l \le m$.

i	0	1	i	0	1	2	i	0	1	2
$V_{:0}$	e_0	e_0		e_0	e_0	e_0		e_4	e_2	e_1
v 1,0	e_1	e_2	Via	e_1	e_1	e_2	Ver	e_5	e_3	e_3
V	e_2	e_1	v _{i,0}	e_2	e_4	e_4	¥ 1,1	e_6	e_6	e_5
V i,1	e_3	e_3		e_3	e_5	e_6		e_7	e_7	e_7
	(a)					()	o)			

32

Our unified construction

Construction: The $(n = k + 2, k, \alpha = 2^m)$ code C has coding matrix A_i of order $\alpha \times \alpha$ and repair matrix S_i of order $\frac{\alpha}{2} \times \alpha$ for $0 \le i < k$, such that

1.
$$\begin{pmatrix} V_{i,0} \\ V_{i,1} \end{pmatrix} A_i = \begin{pmatrix} a_i V_{i,0} + b_i V_{i,1} \\ c_i V_{i,0} + d_i V_{i,1} \end{pmatrix}$$
,
2. $S_i = u_i V_{i,0} + w_i V_{i,1}$,

where a_i, b_i, c_i, d_i, u_i and w_i can be coefficients in \mathbf{F}_q or diagonal matrices over \mathbf{F}_q such that

$$\left(\begin{array}{c}a_iV_{i,0}+b_iV_{i,1}\\c_iV_{i,0}+d_iV_{i,1}\end{array}\right)$$

is nonsingular.

Re-interpretation of Zigzag code

Construction of Zigzag: The $(n = k + 2, k = m, \alpha = 2^m)$ Zigzag code C has coding matrix A_i of order $\alpha \times \alpha$ and repair matrix S_i of order $\frac{\alpha}{2} \times \alpha$ for $0 \le i < m$, such that

$$\begin{pmatrix} V_{i,0} \\ V_{i,1} \end{pmatrix} A_i = \begin{pmatrix} b_i V_{i,1} \\ c_i V_{i,0} \end{pmatrix}$$
 Type 2

and

$$S_i = V_{i,0}$$

where b_i and c_i can be coefficients or diagonal matrices over $\{1, 2\}$.

Re-interpretation of long MDS code

Construction of long MDS: The $(n = k + 2, k = 3m, \alpha = 2^m)$ MDS code C has coding matrix A_i of order $\alpha \times \alpha$ and repair matrix S_i of order $\frac{\alpha}{2} \times \alpha$ for $0 \le i < 3m$, such that

$$\left(\begin{array}{c}V_{i,0}\\V_{i,1}\end{array}\right)A_{i} = \begin{cases} \left(\begin{array}{c}a_{i}V_{i,0} + b_{i}V_{i,1}\\d_{i}V_{i,1}\end{array}\right), & 0 \leq i < m \\\\\left(\begin{array}{c}a_{i}V_{i,0}\\c_{i}V_{i,0} + d_{i}V_{i,1}\end{array}\right), & m \leq i < 2m \\\\\hline\left(\begin{array}{c}a_{i}V_{i,0}\\d_{i}V_{i,1}\end{array}\right), & 2m \leq i < 3m \end{cases}$$
 Type 1

and

$$S_{i} = \begin{cases} V_{i,0} & 0 \leq i < m \\ V_{i,1} & m \leq i < 2m \\ V_{i,0} + w_{i}V_{i,1} & 2m \leq i < 3m \end{cases}$$

Construction of new code 1

Construction 1. The (n = k + 2, k = 3m) code C_1 has coding matrices A_i of order $\alpha \times \alpha$ and repair matrices S_i of order $\frac{\alpha}{2} \times \alpha$ for $1 \le i \le k$, such that

$$1. \left(\begin{array}{c} V_{i,0} \\ V_{i,1} \end{array}\right) A_{i} = \begin{cases} \left(\begin{array}{c} \lambda_{i,1} V_{i,1} \\ \lambda_{i,0} V_{i,0} \end{array}\right), & 1 \le i \le m, \end{cases} \text{Type 2} \\ \left(\begin{array}{c} \lambda_{i,0} V_{i,0} \\ \lambda_{i,1} V_{i,1} + k_{i-m} V_{i,0} \end{array}\right), & m+1 \le i \le 3m, \end{cases} \text{Type 3} \end{cases}$$

$$2. S_{i} = \begin{cases} V_{i,0}, & \text{if } 1 \le i \le m, \\ V_{i,0} + t_{i-m} V_{i,1}, & \text{if } m+1 \le i \le 3m, \end{cases}$$

where $\lambda_{i,0}, \lambda_{i,1}, k_j, t_j \in \mathbf{F}_q^*$ for all $1 \leq i \leq k$ and $1 \leq j \leq 2m$.

Repair for parity nodes of high-rate code

- Li, Tang and Tian, Enabling All-Node-Repair in Minimum Storage Regenerating Codes, arXiv:1604.07671, April 2106. (*d=n-1*)
- 2. Ye and Barg, Explicit constructions of optimal-access MDS codes with nearly optimal sub-packetization, arXiv:1605.08630, May 2016. (*d*≤*n*-1)
- 3. Sasidharan, Vajha, and Kumar, An explicit, coupled-layer construction of a high-rate MSR code with low sub-packetization level, small field size and all-node repair, arXiv:1607.07335, July 2016. (*d*≤*n*-1)

Barrier

A new transformation

Procedure

Given a base MDS (storage) code

- Step 1: **Space sharing**
- Step 2: Permuting
- Step 3: Paring

Step 1

Space sharing *r* instances to get code C₁

Step 2

Permuting data in variable nodes of C_1 to get C_2

In some cases, the permutations can be arbitrary.

Step 3

Paring data in variable nodes of C_2 to get C_3

The resultant code

Structure of the MDS storage code C_3

44

Optimal repair of variable nodes

Repair of stationary nodes

$S_{0,1}f_1^{(i)}, S_{0,2}f_2^{(i)}, S_{0,3}f_3^{(i)}, S_{0,4}g_0^{(i)}, S_{0,5}g_1^{(i)}, S_{0,6}g_2^{(i)} \longrightarrow f_0^{(i)}$					
	-	Instance 0	Instance 1	Instance 2	
	ode 0	$f_{0}^{(0)}$	$f_{0}^{(1)}$	$f_{0}^{(2)}$	
	Node 1	$S_{0,1}f_1^{(0)}$	$S_{0,1}f_1^{(1)}$	$S_{0,1}f_1^{(2)}$	
Download data $S_{i,j}f_j^{(l)}$	Node 2	$S_{0,2}f_2^{(0)}$	$S_{0,2}f_2^{(1)}$	$S_{0,2}f_2^{(2)}$	
	Node 3	$S_{0,3}f_3^{(0)}$	$S_{0,3}f_3^{(1)}$	$S_{0,3}f_3^{(2)}$	
$S_{i,k+j+l}(ag_{j+l}^{(l)} + g_{j+l}^{(l)})$	$\binom{j}{j+l}$ Node 4	$S_{0,4}g_0^{(0)}$	$S_{0,5}(-g_1^{(1)}+g_1^{(0)})$	$S_{0,6}(-g_2^{(2)}+g_2^{(0)})$	
	Node 5	$S_{0,5}(g_1^{(0)} + g_1^{(1)})$	$S_{0,6}g_2^{(1)}$	$S_{0,4}(-g_0^{(2)}+g_0^{(1)})$	
	Node 6	$S_{0,6}(g_2^{(0)} + g_2^{(2)})$	$S_{0,4}(g_0^{(1)} + g_0^{(2)})$	$S_{0,5}g_1^{(2)}$	

Application I

Application II

Remarks

MSR with optimal repair for all nodes

1.Li, Tang and Tian, Enabling All-Node-Repair in Minimum Storage Regenerating Codes, arXiv:1604.07671, April 2106.

2.Ye and Barg, Explicit constructions of optimal-access MDS codes with nearly optimal sub-packetization, arXiv:1605.08630, May 2016.

3.Sasidharan, Vajha, and Kumar, An explicit, coupled-layer construction of a high-rate MSR code with low sub-packetization level, small field size and all-node repair, arXiv:1607.07335, July 2016.

MSR from MDS

1.Sasidharan, Vajha, and Kumar, An explicit, coupled-layer construction of a high-rate MSR code with low sub-packetization level, small field size and all-node repair, arXiv:1607.07335, July 2016.

 2.Li , Tang and Tian, A Generic Transformation for Optimal Repair Bandwidth and Rebuilding Access in MDS Codes," Proc. of the 2017 IEEE Internl. Symp. Inform.
 49
 Th. , Aachen, Germany, June 2017.

A comparison with the recent results

A comparison of some key parameters between the (*k*+*r*, *k*) MSR codes

	Sub-packetization	Field size q	Systematic form
Ye-Barg code 1	r^{k+r}	q > r(k+r)	No
Hadmard design code	r^{k+1}	a > rk	Yes
employing our transformation		4	
Ye-Barg code 2	r^{k+r-1}	q > k + r	No
Zigzag code		q=3 if $r=2$	
employing our	r^{k}	q = 4 if $r = 3$	Yes
transformation		$q > r^k \sum_{t=1}^r {\binom{k-1}{t-1} \binom{r-1}{t-1}}$ if $r > 3$	
Ye-Barg code 3	$r^{\frac{k}{r}+1}$	q > k + r	No
Long MDS code	$\frac{k}{n+1}+1$	$a > r^{\frac{k}{r+1}+1} \sum_{k=1}^{r} {k-1 \choose r-1}$	Vac
employing our transformation	T^{r+1}	$q > r$ $\sum_{t=1}^{2} (t-1)(t-1)$	108

Conclusions

■ Proposed a framework of MDS storage code construction

- with optimal repair property for systematic nodes
- with optimal access property
- with optimal update property

■ Proposed a generic transformation of MDS storage code

- from code with optimal repair property for systematic nodes to code with optimal repair property for all nodes
- from scalar code to code with optimal repair property for all nodes

